Bio-lessons

Внутреннее строение листа

Внутреннее строение листа

Снаружи лист покрыт преимущественно однослойным, иногда многослойным эпидермисом (кожицей). Он состоит из живых клеток, большинство из которых лишены хлорофилла. Сквозь них солнечные лучи легко попадают к низшим слоям клеток листа. У большинства растений кожица выделяет и создает снаружи тонкую пленку из жирообразных веществ – кутикулу, которая почти не пропускает воду. На поверхности некоторых клеток кожицы могут быть волоски, шипики, которые защищают листок от повреждений, перегрева, чрезмерного испарения воды. У растений, которые растут на суше, на нижней стороне листка в эпидермисе есть устьица (во влажных местах (капуста) – устьица с обеих сторон листа; у водяных растений (водяная лилия), листья которых плавает на поверхности, – на верхней стороне; у растений, которые погружены полностью в воду, устьиц нет). Функции устьиц: регуляция газообмена и транспирации (испарения воды листвой). В среднем на 1 квадратный миллиметр поверхности приходится 100–300 устьиц. Чем выше лист расположен на стебле, тем больше устьиц на единицу поверхности.

Между верхним и внешним слоями эпидермиса расположены клетки основной ткани – ассимиляционной паренхимы. У большинства видов покрытосеменных различают два вида клеток этой ткани: столбчатую (палисадную) и губчатую (рыхлую) хлорофиллоносные паренхимы. Вместе они составляют мезофилл листа. Под верхней кожицей (иногда – и над нижней) содержится столбчатая паренхима, которая состоит из клеток правильной формы (призматической), расположенных вертикально несколькими слоями и плотно прилегающих одна к другой. Рыхлая паренхима находится под столбчатой и над нижней кожицей, состоит из клеток неправильной формы, которые не прилегают плотно одна к другой и имеют большие межклетники, заполненные воздухом. Межклетники занимают до 25 % объёма листа. Они соединяются с устьицами и обеспечивают газообмен и транспирацию листа. Считается, что интенсивнее процессы фотосинтеза происходят в палисадной паренхиме, так как ее клетки имеют больше хлоропластов. В клетках рыхлой паренхимы хлоропластов значительно меньше. В них активно запасается крахмал и некоторые другие питательные вещества.

Сквозь ткани паренхимы проходят сосудисто-волокнистые пучки (жилки). В их состав входят проводящая ткань – сосуды (в самых мелких жилках – трахеиды) и ситовидные трубки – и механическая. Сверху сосудисто-волокнистого пучка расположена ксилема, а снизу – флоэма. По ситовидным трубкам протекают органические вещества, которые образовались в процессе фотосинтеза, ко всем органам растения. По сосудам и трахеидам к листу поступает вода с растворенными в ней минеральными веществами. Механическая ткань придает прочность листовой пластинке, опору проводящей ткани. Между проводящей системой и мезофиллом находится свободное пространство или апопласт.

Внутреннее строение

Еще более интересным является внутреннее строение листьев.

Строение кожицы

Верхняя кожица, она же эпидерма представляет собой покровную ткань на обращенной стороне листа. Часто она покрыта волосками, кутикулой, воском. Кожица защищает лист от потенциально неблагоприятных воздействий внешней среды: механических повреждений, проникновения болезнетворных микроорганизмов, высыхания. Часть клеток кожицы плотно примыкают друг к другу, что повышает ее защитные качества. Также все клетки являются прозрачными, благодаря чему солнечный свет беспрепятственно проникает внутрь листа.

Так выглядит кожица листа.

Другая часть клеток кожицы более мелкая, именно в них находятся хлоропласты, участвующие в фотосинтезе и придающие листьям зеленый цвет. Интересно, что эти клетки способны менять свою форму, приближаться и отдалятся друг от друга. Сами эти клетки биологи назвали замыкающими, а щель, которая образовывается между ними при их отдалении – устьичной. Устьице открывается в тот момент, когда замыкающие клетки насыщены водой. И, наоборот, при оттоке воды из замыкающих клеток устьице закрывается.

Строение устьица

Именно через устьице происходит поступления воздуха к внутренним клеткам листа, через него же внутренние газообразные вещества, включая пары воды, выходят наружу. Если растению недостает воды (например, в жаркую или сухую погоду) устьица закрываются. Таким нехитрым образом, растение защищает себя от иссушения, так как водяные пары при закрытых устьичных щелях не выходят наружу, а сохраняются во внутренних клетках, продолжая питать растение влагой.

Так схематически выглядит строение устьица.

Основная ткань

Под слоем кожицы расположена так званная столбчатая ткань, клетки которой плотно прилегают друг к другу и обладают цилиндрической формой. Расположенная с верхней стороны листа (обращенной к свету) столбчатая ткань также принимает активное участие в фотосинтезе. Каждая клетка этой ткани обладает хлоропластами, придающими листу зеленый цвет.

Еще дальше, уже под слоем столбчатой ткани находится губчатая ткань, по сути это и есть основная ткань листа. Клетки ее имеют округлую форму и расположены рыхло. Между ними образуются свободные пространства, названные межклетниками, в которых собирается воздух, а также накапливаются пары воды, поступающие сюда из клеток.

Толщина слоя столбчатой и губчатой ткани зависит от освещения: в листьях, растущих на свету столбчатая ткань развита сильнее губчатой, с точностью до наоборот ситуация у листьев, произрастающих в тени.

Помимо всего этого листья еще обладают и проводящей тканью. Проводящей тканью называют основную ткань листа, пронизанную жилками. Жилки – это такие проводящие пучки, образованные из луба и древесины, по которым осуществляется передача растворов сахара из листьев ко всем другим органам растения. При этом движение сахара внутри жилок идет по ситовидным трубкам луба, образованным живыми клетками. Клетки эти вытянуты в длину и соприкасаются друг с другом короткими сторонами в оболочках с отверстиями. Через эти отверстия раствор сахара переходит из одной клетки в другую. В целом ситовидные трубки способны передавать разные органические вещества на весьма большие расстояния.

Строение жилок

Помимо луба в состав проводящего пучка входит и древесина. По сосудам листа движется вода с растворенными в ней питательными минеральными веществами. Вода и минеральные вещества при этом поглощаются растениями из почвы при помощи корней. Затем по сосудам древесины полезные вещества поступают в другие надземные органы, в том числе и в клетки листьев.

Транспирация

Транспирация

Транспирация (от лат. trans – сквозь и spiro – дышу). Это выведение растением водяного пара (испарение воды). Растения поглощают много воды, но используют лишь незначительную ее часть. Воду испаряют все части растения, но в особенности – листья. Благодаря испарению вокруг растения возникает особый микроклимат.

Устьичная транспирация

Устьичная транспирация – это испарение воды через устьица. Наиболее интенсивной является устьичная. Устьица регулируют скорость испарения воды. Количество устьиц у разных видов растений разное.

Транспирация способствует поступлению нового количества воды к корню, поднятию воды по стеблю к листьям (с помощью всасывающей силы). Таким образом корневая система образует нижний водный насос, а листья – верхний водный насос.

Одним из факторов, определяющих скорость испарения, является влажность воздуха: чем она выше, тем меньше испарение (испарение прекращается при насыщении воздуха водным паром).

Значение испарения воды: снижает температуру растения и защищает ее от перегрева, обеспечивает восходящий ток веществ от корня к надземной части растения. От интенсивности транспирации зависит интенсивность фотосинтезов, поскольку оба этих процесса регулируются устьичным аппаратом.

Листорасположение

Это расположение в определенном порядке листьев на стебле. Листорасположение – это наследственный признак, но во время развития растения при приспособлении к условиям освещения может изменяться (например, в нижней части листорасположение противоположное, в верхней – очередное). Различают три вида листорасположения: спиральное, или очередное, супротивное и кольчатое.

Виды листорасположения

Спиральное

Присуще большинству растений (яблоня, береза, шиповник, пшеница). При этом от узла отходит лишь один лист. Расположены листья на стебле по спирали.

Супротивное

В каждом узле два листа сидят один напротив другого (сирень, клен, мята, шалфей, крапива, калина и т. п.). В большинстве случаев листья двух соседних пар отходят в двух взаимно противоположных плоскостях, не затеняя друг друга.

Кольчатое

От узла отходит больше двух листьев (элодея, вороний глаз, олеандр и т. п.).

Форма, размер и расположение листьев приспособлены к условиям освещения. Взаимное расположение листьев напоминает мозаику, если посмотреть на растение сверху в направлении света (у граба, вяза, клена и др.). Такое расположение называется листовой мозаикой. При этом листья не затеняют друг друга и используют свет эффективно.

Влияние факторов среды на внешнее строение листа

Для выживания растения крайне важна степень его приспособляемости. Например, для влажных мест характерны крупные листовые пластины и большое количество устьиц, в то время как в засушливых регионах этот механизм действует иначе. Ни цветы, ни деревья не отличаются размерами, а количество пор заметно сокращено, чтобы воспрепятствовать избыточному испарению.

Таким образом, можно проследить, как части растений под воздействием окружающей среды со временем видоизменяются, что влияет и на количество устьиц.

Хотя учёные давно знали об испарении воды поверхностью листа, первым, кто наблюдал устьица, был итальянский натуралист Марчелло Мальпиги , который это открытие опубликовал в 1675 году в своей работе Anatome plantarum
. Однако он не понял их настоящую функцию. В то же время его современник Неемия Грю развил гипотезу об участии устьиц в вентиляции внутренней среды растения и сравнил их с трахеями насекомых . Прогресс в изучении наступил в XIX веке , и тогда же, в 1827 году , швейцарским ботаником Декандолем было впервые использовано слово „stoma“. Изучением устьиц в то время занимались Гуго фон Моль , который открыл основной принцип открывания устьиц и Симон Швенденер , классифицировавший устьица по типу их конструкции.

Некоторые аспекты функционирования устьиц продолжают интенсивно изучаться и в настоящее время; материалом в основном служат Коммелина обыкновенная (Commelina communis

), Боб садовый (Vicia faba

), Кукуруза сахарная (Zea mays

) .

Типы

Устьица у растения делятся на множество типов в зависимости от расположения сопровождающих клеток:

  • Аномоцитный — рассматривается как самый распространённый, где побочные частицы не отличаются от прочих, находящихся в эпидермисе. Как одну из его простых модификаций можно назвать латероцитный тип.
  • Парацитный — характеризуется параллельным примыканием сопровождающих клеток относительно устьичной щели.
  • Диацитный — имеет только две побочных частицы.
  • Анизоцитный — тип, присущий лишь цветковым растениям, с тремя сопровождающими клетками, одна из которых заметно отличается по размеру.
  • Тетрацитный — свойственен для однодольных, имеет четыре сопровождающих клетки.
  • Энциклоцитный — в нём побочные частицы смыкаются кольцом вокруг замыкающих.
  • Перицитный — для него характерно устьице, не соединенное с сопровождающей клеткой.
  • Десмоцитный — отличается от предыдущего типа только наличием сцепления щели с побочной частицей.

Здесь приведены лишь самые популярные виды.

Процесс газообмена в листьях

Газообмен листьев происходит благодаря диффузии газов через всю поверхность листа и через устьица листьев. Под диффузией понимают процесс, при котором происходит взаимное проникновение молекул одного разных веществ.

Основной оборот газа у растений главным образом происходит через листья благодаря большой площади его поверхности и очень малой толщине. В мякоти листа содержится огромное количество хлоропластов с зеленым хлорофиллом.

Кислород поступает в ткани растения, далее через межклетники он проникает в его клетки.

Обмен газов происходит при открытии и закрытии устьиц между листом и атмосферой. Через устьица кислород поступает в лист, через них же выводится углекислый газ и испаряется влага. В процессе фотосинтеза поступление углекислого  газа осуществлятся через щель в клетках устьиц. Затем он поступает к хлорофилосодержащим тканям листа.

Это сопровождается выделением кислорода – освободившись в процессе фотосинтеза, он начинает выходить наружу. В процессе дыхания растение поглощает кислород, а выделяет углекислый газ. Кроме кислорода растения способны высвобождать водяные пары, также выходящие через устьица. Этот процесс называют транспирацией. Таким образом, газообменные процессы в листе регулируются благодаря открыванию и закрыванию устьичной щели.

Приспособление листьев к газообмену

Для осуществления газообмена листьев есть специальные приспособления – кожица, жилки, устьица и чечевички.

Со всех сторон лист окружен покровной тканью – эпидермой или кожицей, состоящей из слоя плотно примыкающих живых клеток без межклетников между ними. Наружные стенки покровных клеток утолщенные. Эти клетки выделяют воскоподобные вещества, образующие кутикулу. Клетки кожицы не содержат хлорофилла. Поэтому, они не способны к фотосинтезу и газообмену. Но, они свободно пропускают солнечные лучи в глубину листа к фотосинтезирующим клеткам основной ткани. Их называют паренхимами.

Кожица листа также непроницаема для газов. С одной стороны, эпидермис защищает листья растения от высыхания. Но, с другой стороны, через него проходят  массы газов и паров воды, причем в разных направлениях. К ним относятся весьма интенсивные процессы газообмена и парообмена. У листьев растений проблема  газообмена и парообмена успешно разрешается через устьица.

Почти всю площадь листа, кроме жилок, занимает основная ткань, мезофилл. Она состоит из столбчатой и губчатой фотосинтезирующих тканей. Столбчатый мезофилл, или основная фотосинтезирующая ткань листа, располагается над верхним слоем кожицы и состоит из вертикально вытянутых клеток. Они плотно прижаты друг к другу и содержат хлорофилл в большом количестве. Благодаря наличию хлоропластов в столбчатой ткани мякоти листа происходит фотосинтез с образованием органических веществ. Они доставляются в разные части растения.

Губчатый мезофилл расположен ниже относительно столбчатого мезофилла. Он состоит из фотосинтезирующих клеток, которые рыхло расположены и имеют большие межклетники. Благодаря этому осуществляется свободный газообмен с внешней средой.

В эпидермисе листа располагаются устьица. Через устьица и межклетники губчатого мезофилла углекислый газ поступает в клетки столбчатого мезофилла. Образованный в процессе фотосинтеза кислород свободно проникает в атмосферу из листа. Площадь поверхности клеток губчатого мезофилла превышает площадь поверхности листа. Это способствует интенсивному газообмену листьев.

Устьица занимают не более 2 процентов площади всего листа. Длина устьичной щели составляет 20-30 мкм. Ширина щели колеблется в пределах  3-6  мкм

Внешнее строение

Листьям свойственны разные размеры: от нескольких миллиметров до 10-20 метров (такие самые длинные листья растут у пальм). Продолжительность жизни листьев также может длиться от нескольких месяцев вплоть до 15 лет (у некоторых тропических растений). Размер и форма листьев определяются наследственными признаками.

Что же касается внешнего строения листьев, то всякий лист состоит из листовой пластинки, черешка (за исключением так званных «сидячих листьев») и прилистников, характерных для ряда растительных семейств. Также листья могут быть, как простыми (с одной листовой пластиной), так и сложными (у которых листовых пластин несколько).

Листовая пластина – это расширенная, как правило, плоская часть листа, ответственная за функции фотосинтеза, газообмена, и транспирации, а порой и вегетативного размножения.

Основание листа (листовая подушка) – это часть листа, соединяющая его со стеблем. Именно тут располагается образовательная ткань, дающая рост всему листу.

Прилистники – это парные листовидные образования в основании листа. Они имеются не у всех листьев, также могут опадать при развертывании листа либо наоборот сохраняться. Прилистники защищают пазушные боковые почки и вставочную образовательную часть листа.

Черешок – это суженная часть листа, которая соединяет листовую пластину с листовой подушкой и стеблем. Именно черешок ответственен за ряд очень важных функций в жизнедеятельности листа: он ориентирует лист по направлению к свету, является вместилищем вставочной образовательной ткани, за счет которой происходит рост листа. Также черешок имеет механическое значение для ослабления ударов по листовой пластинке от дождя, ветров, града и т. д.

Вот так выглядит внешнее строение листьев на рисунке.

Разработка

Существует три основных типа эпидермальных клеток, которые в конечном итоге происходят из внешнего (L1) тканевого слоя апикальной меристемы побега , называемых протодермальными клетками: трихомы , тротуарные клетки и замыкающие клетки , все из которых расположены неслучайно.

В протодермальных клетках происходит асимметричное деление клеток, в результате чего одна большая клетка должна стать мостовой, а меньшая клетка, называемая меристемоидом, в конечном итоге дифференцируется в замыкающие клетки, окружающие стому. Этот меристемоид затем асимметрично делится от одного до трех раз, прежде чем дифференцироваться в замыкающую материнскую клетку. Затем замыкающая материнская клетка делает одно симметричное деление, которое образует пару замыкающих клеток. В некоторых клетках деление тормозится, поэтому между устьицами всегда есть хотя бы одна клетка.

Формирование устьичного паттерна контролируется взаимодействием многих компонентов передачи сигнала, таких как EPF (фактор формирования эпидермального паттерна ), ERL (ERecta Like) и YODA (предполагаемая киназа киназы киназы MAP ). Мутации в любом из генов, кодирующих эти факторы, могут изменить развитие устьиц в эпидермисе. Например, мутация в одном гене приводит к тому, что больше устьиц сгруппированы вместе, поэтому она называется «Слишком много ртов» ( TMM ). В то же время нарушение гена SPCH (SPeecCHless) предотвращает развитие устьиц в целом. Активация устьичной продукции может происходить путем активации EPF1, который активирует TMM / ERL, которые вместе активируют YODA. YODA ингибирует SPCH, вызывая снижение активности SPCH, что способствует асимметричному делению клеток, которое инициирует образование устьиц. Развитие устьиц также координируется сигналом клеточного пептида, называемым стомагеном, который сигнализирует об угнетении SPCH, что приводит к увеличению числа устьиц.

Факторы окружающей среды и гормональные факторы могут повлиять на развитие устьиц. Свет увеличивает развитие устьиц у растений; в то время как растения, выращенные в темноте, имеют меньшее количество устьиц. Ауксин подавляет развитие устьиц, влияя на их развитие на уровне рецепторов, таких как рецепторы ERL и TMM. Однако низкая концентрация ауксина обеспечивает равное деление замыкающей материнской клетки и увеличивает шанс продуцирования замыкающих клеток.

У большинства покрытосеменных деревьев устьица имеется только на нижней поверхности листьев. Они есть у тополей и ив с обеих сторон. Когда листья развивают устьица на обеих поверхностях листа, устьица на нижней поверхности имеют тенденцию быть больше и многочисленнее, но могут быть большие различия в размере и частоте встречаемости в зависимости от видов и генотипов. Белый ясень и листья белой березы имели меньше устьиц, но больше по размеру. С другой стороны , сахарный клен и серебряный клен был небольшой устьица , которые были более многочисленны.

Предназначение устьичной щели

Наверное, нет нужды подробно останавливаться на таком аспекте, как функции листа. Об этом знает даже школьник. А вот за что отвечают устьица? Их задача — обеспечение транспирации (процесс движения воды через растение и её испарение через наружные органы, такие как листья, стебли и цветы), что достигается за счёт работы замыкающих клеток. Этот механизм защищает растение от иссушения в жаркую погоду и не позволяет начаться процессу гниения в условиях чрезмерной влажности. Принцип его работы предельно прост: если количество жидкости в клетках недостаточно высоко, давление на стенки падает, и устьичная щель смыкается, сохраняя требуемое для поддержания жизнедеятельности содержание влаги.

И напротив, её переизбыток ведёт к усилению напора и открытию пор, через которые лишняя влага испаряется. Благодаря этому, роль устьиц в охлаждении растений также велика, поскольку температура воздуха вокруг снижается именно посредством транспирации.

Также под щелью расположена воздушная полость, служащая для газообмена. Воздух проникает в растение сквозь поры, чтобы в дальнейшем вступить в и дыхания. Лишний кислород затем выходит в атмосферу посредством всё той же устьичной щели. При этом её наличие или отсутствие часто используется для классификации растений.

Дыхание и фотосинтез растений

Все живые организмы, в том числе и растения, способны к дыханию. Этот всем известный факт является обязательным условием их существования. Суть его заключается в поглощении кислорода, окислении органических веществ и выделении углекислого газа. Но планетарное значение растений заключается в осуществлении обратного процесса — фотосинтеза. В его ходе углекислый газ поглощается, а кислород, необходимый всему живому, выделяется. Растения способны осуществлять два этих процесса одновременно с разной интенсивностью во многом благодаря деятельности устьиц, находящихся на поверхности листа.

Функции листа

Лист является внешним органом, с помощью которого выполняется фотосинтез, дыхание, транспирация, гуттация и вегетативное размножение. Более того, он способен накапливать влагу и органические вещества посредством устьиц, а также обеспечивать растению большую приспособляемость к сложным условиям окружающей среды.

Поскольку вода — основная внутриклеточная среда, выведение и циркуляция жидкости внутри дерева или цветка одинаково важны для его жизнедеятельности. При этом растение усваивает лишь 0,2 % всей влаги, проходящей через него, остальная же часть уходит на транспирацию и гуттацию, за счёт которых происходит передвижение растворённых минеральных солей и охлаждение.

Вегетативное размножение зачастую происходит посредством срезания и укоренения листьев цветков. Многие комнатные растения выращиваются подобным образом, поскольку только так можно сохранить чистоту сорта.

Как было сказано ранее, помогают приспособиться к различным природным условиям. Например, трансформация в колючки помогает пустынным растениям снизить испарение влаги, усики усиливают функции стебля, а большие размеры зачастую служат для сохранения жидкости и полезных веществ там, где климатические условия не позволяют подпитывать запасы регулярно.

И этот список можно продолжать бесконечно. При этом сложно не заметить, что данные функции одинаковы для листьев цветков и деревьев.

Старение листьев и листопад

Как и всем живым организмам, листьям свойственно старение, ведущее к их листопаду, отмиранию. В этом заключается вечный природный ритм: старые листья должны опасть, чтобы на их месте родились новые и молодые. При старении в листьях замедляются все процессы их жизнедеятельности, в частотности процесс фотосинтеза. В старых листьях происходит разрушение хлорофилла, именно по этой причине с наступлением осени они теряют свой зеленый цвет, становясь желтыми или красными.

При опадении листьев все ценные вещества из них переходят в другие органы, а само растение погружается в зимнюю спячку, чтобы с наступлением весны в очередной раз обзавестись новым листвяным покровом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector